||
Membaca
USM ITT 2010

Solusi USM IT Telkom 2010 Kode 11 – Nomor 18


Diketahui\ f(x)=\frac{1}{2x}\ dan\ g(x)=x^2-2x+1\ maka\\(g\circ f)(x)=....
(A)\quad \Big(\frac{1-2x}{2x}\Big)^2
(B)\quad \Big(\frac{2x-1}{2x}\Big)^2
(C)\quad \Big(\frac{1-4x}{2x}\Big)^2
(D)\quad \Big(\frac{1+2x}{2x}\Big)^2
(E)\quad \Big(\frac{2x+1}{2x}\Big)^2
Jawaban: A

g(x)=x^2-2x+1=(x-1)^2
\begin{array} {rcl} (g\circ f)(x)&=&g(f(x))\\\\&=&g\big(\frac{1}{2x}\big)\\\\&=&\big(\frac{1}{2x}-1\big)^2\\\\&=&\Big(\frac{1-2x}{2x}\Big)^2\end{array}

About Kalakay

Guru Matematika SMK

Diskusi

Belum ada komentar.

Tinggalkan Balasan

Isikan data di bawah atau klik salah satu ikon untuk log in:

Logo WordPress.com

You are commenting using your WordPress.com account. Logout / Ubah )

Gambar Twitter

You are commenting using your Twitter account. Logout / Ubah )

Foto Facebook

You are commenting using your Facebook account. Logout / Ubah )

Foto Google+

You are commenting using your Google+ account. Logout / Ubah )

Connecting to %s

%d blogger menyukai ini: