||
Membaca
SMK Teknologi dan Rekayasa

Soal 123 Integral Tak Tentu dan Tentu


Ditentukan\ F{}'(x)=3x^{2}+6x+2,\ F{}'(x)\ adalah\ turunan\ dari\ F(x),\\maka\ F(x)=....\\a.\ \ 3x^{3}+6x^{2}+2x+C\\b.\ \ 6x^{3}+6+C\\c.\ \ x^{3}+3x^{2}+2x+C\\d.\ \ x^{3}+6x^{2}+2x+C\\e.\ \ x^{3}+x^{2}+x+C
Jawaban: c

\begin{array}{rcl}F(x)&=&\int F{}'(x)\ dx\\\\&=&\int (3x^{2}+6x+2)\ dx\\\\&=&3.\frac{x^{2+1}}{2+1}+6.\frac{x^{1+1}}{1+1}+2x+C\\\\&=&3.\frac{x^{3}}{3}+6.\frac{x^{2}}{2}+2x+C\\\\&=&x^{3}+3x^{2}+2x+C\end{array}

About Kalakay

Guru Matematika SMK

Diskusi

One thought on “Soal 123 Integral Tak Tentu dan Tentu

  1. bermanfaAt bnget bgqu.thanks ea

    Posted by safwa ajha | 1 September 2013, 12:12 AM

Tinggalkan Balasan

Isikan data di bawah atau klik salah satu ikon untuk log in:

Logo WordPress.com

You are commenting using your WordPress.com account. Logout / Ubah )

Gambar Twitter

You are commenting using your Twitter account. Logout / Ubah )

Foto Facebook

You are commenting using your Facebook account. Logout / Ubah )

Foto Google+

You are commenting using your Google+ account. Logout / Ubah )

Connecting to %s

%d blogger menyukai ini: