||
Membaca
SMK Teknologi dan Rekayasa

Soal 47 Operasi Vektor


Jika\ vektor\ \bar{a}=(\begin{matrix} -1 & 2 & 3 \end{matrix})\ dan\ \bar{b}=\left ( \begin{matrix} 1\\ -2\\ 3 \end{matrix} \right ),\ maka\ \bar{a}.\bar{b}=....\\\\a.\ -5\ \ \ \ \ \ \ \ \ \ b.\ -4\ \ \ \ \ \ \ \ \ \ c.\ \ 4\ \ \ \ \ \ \ \ \ \ d.\ \ 5\ \ \ \ \ \ \ \ \ \ e.\ \ 9
Jawaban: c

\begin{array}{rcl}\bar{a}.\bar{b}&=&-1.1+2.(-2)+3.3\\&=&-1+(-4)+9\\&=&4\end{array}
Keterangan:\\Vektor\ \bar{a}\ dan\ vektor\ \bar{b}\ keduanya\ sama-sama\ vektor\ di\ ruang\\tetapi\ dinyatakan\ dengan\ cara\ yang\ berbeda.\ Vektor\ \bar{a}\ dinyatakan\\sebagai\ vektor\ baris,\ sedangkan\ vektor\ \bar{b}\ dinyatakan\ sebagai\ vektor\\kolom.

About Kalakay

Guru Matematika SMK

Diskusi

Belum ada komentar.

Tinggalkan Balasan

Isikan data di bawah atau klik salah satu ikon untuk log in:

Logo WordPress.com

You are commenting using your WordPress.com account. Logout / Ubah )

Gambar Twitter

You are commenting using your Twitter account. Logout / Ubah )

Foto Facebook

You are commenting using your Facebook account. Logout / Ubah )

Foto Google+

You are commenting using your Google+ account. Logout / Ubah )

Connecting to %s

%d blogger menyukai ini: